Radon is a naturally occurring radioactive, colorless, odorless gas. It is the leading cause of lung cancer in American non-smokers, and the second leading cause of lung cancer overall. It can collect in homes, buildings, and even in the water supply. Radon gas is formed naturally when uranium-238 undergoes radioactive decay, producing energy and several radioactive products such as radon-222 and thorium-232. (The thorium later decays to emit energy and radon-220.) Radon is more commonly found where uranium is relatively abundant in bedrock at the surface, often in granite, shale, and limestone. The EPA has produced a map of the US showing geographic variation in radon concentrations, divided into three levels of risk: high, medium, and low (Figure 9.24).

Although radon is more or less universally present, high levels of radon are associated with areas containing uranium-rich bedrock. Most rocks have a small amount of uranium, but certain rocks tend to have higher concentrations of the radioactive element, such as light-colored volcanic rocks, granites, dark shales, sedimentary rocks with phosphates, and metamorphic rocks. Radon concentrations are generally high in the Southwest’s mountainous areas, as uranium is relatively concentrated in the granites, black shales, and metamorphic rocks of the Rocky Mountains (Figure 9.25). The sediments eroded from those areas also carry a high radon hazard potential, leading to moderate radon presence throughout the Southwest.

Radon is chemically inert, meaning that it does not react or combine with elements in the ground, and it can move up through rocks and soil into the atmosphere. It is dangerous primarily when it accumulates indoors, creating a health hazard similar to that of secondhand smoke. Radon gas finds its way through cracks in basement foundations, sump pump wells, dirt floor crawlspaces, and basement floor drains. It can also be found in well and municipal water. Since radon is more easily released from warm water than from cold water, one of the greatest forms of exposure likely occurs while showering in water with high radon levels.

Radon cannot be detected by sight or smell, so there is no way that the body can sense its presence. Fortunately, with proper monitoring and mitigation (reduction) techniques, radon gas can be easily reduced to low levels. One technique that is often used in homes involves sealing cracks in the basement floor, covering drains, and installing ventilation systems. A well-ventilated space will prevent the radon from accumulating and will reduce the risk of exposure. Most states have licensed radon mitigation specialists who are trained in the proper testing and mitigation of radon levels in buildings. The EPA has also published a homebuyer’s guide designed to help citizens make informed decisions about radon gas. For radon in water, filtration systems can be installed to mitigate exposure in the home.

Figure 9.24: Radon zone map of the US. (Note: Zone 1 contains the highest radon levels.)

Figure 9.24: Radon zone map of the US. (Note: Zone 1 contains the highest radon levels.)

Figure 9.25: Radon risk levels at the surface in the Southwestern US.

Figure 9.25: Radon risk levels at the surface in the Southwestern US.